If it's not what You are looking for type in the equation solver your own equation and let us solve it.
w^2-20w=96
We move all terms to the left:
w^2-20w-(96)=0
a = 1; b = -20; c = -96;
Δ = b2-4ac
Δ = -202-4·1·(-96)
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-28}{2*1}=\frac{-8}{2} =-4 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+28}{2*1}=\frac{48}{2} =24 $
| 3(2x+9)-6=12 | | 700-45w=450+15w | | 27=0.7x | | 16-(2z+1)z=-4 | | (x-4)(-18)=x(-x14) | | 3d=18=21 | | 44÷1/8=w | | 10k=5=65 | | 16000/x=7.2 | | n/18=20/15 | | 20/15=n/18 | | 9=-3(-y+1) | | -9u+8=-17-4u | | 3/4g=6 | | 19+10u=-5+4u | | y^2-10y=96 | | 3.84h=$.83 | | 1/5×3x=2+42 | | 4(d+2)-2d=0 | | 4r-3=18 | | y^2+20y=96 | | 7x+3=-20 | | -4x30=26 | | 92-w=188 | | 4w+28=-4w+12 | | 8x-24+8=5x-2 | | 7(x+5)=3(x+15) | | -m^2-2m+5=0 | | 6x/6=24/6 | | 6/5k+2/k-3=0 | | 5=w/2.2 | | (u+7)^2=2u^2+8u+54 |